Technologies and Economics of Turbine Inlet Cooling Application in Cogeneration

Dharam V. Punwani
Avalon Consulting, Inc.

Presented at
The Midwest Cogeneration Association and The Illinois Water Works Association Conference
Countryside, IL
May 6, 2008
Presentation Outline

• Introduction

• Effects of Ambient Air Temperature on the Performance of Combustion Turbines

• What is Turbine Inlet Cooling (TIC)?

• Benefits of TIC

• TIC Technologies

• Economics of TIC Applications in Cogeneration

• TIC Applications in Cogeneration

• Conclusions
Power Demand and Electric Energy Price Rise with Hot Weather

Price of electric energy goes up during the peak demand periods: as much as 4 times that during the off-peak periods

Source: G.R. Hilberg, POWER-GEN Asia 2006
2004 EPA Carbon Factors, lbs/MWh

Carbon Footprints for Power Generation are High During Non-Baseload Periods

<table>
<thead>
<tr>
<th>State</th>
<th>Average</th>
<th>Non-Baseload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois</td>
<td>1,200</td>
<td>2,200</td>
</tr>
<tr>
<td>Indiana</td>
<td>2,100</td>
<td>2,200</td>
</tr>
<tr>
<td>Iowa</td>
<td>1,900</td>
<td>2,400</td>
</tr>
<tr>
<td>Michigan</td>
<td>1,500</td>
<td>2,000</td>
</tr>
<tr>
<td>Minnesota</td>
<td>1,500</td>
<td>2,000</td>
</tr>
<tr>
<td>Ohio</td>
<td>1,800</td>
<td>2,000</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1,700</td>
<td>2,100</td>
</tr>
</tbody>
</table>

Source: John Kelly Presentation at the MCA Meeting, March 13, 2008
Carbon Footprint Reduction Efforts

• Many organizations, including power producers, are trying various options for reducing the carbon footprint

• Most such options come at premium prices, which ratepayers eventually pay.
Power Generation Footprint

<table>
<thead>
<tr>
<th>Power System</th>
<th>Heat Rate (LHV), Btu/kWh</th>
<th>Carbon Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT in Combined-Cycle</td>
<td>6,500-7000</td>
<td>Lowest</td>
</tr>
<tr>
<td>CT in Simple-Cycle</td>
<td>8,000-10,000</td>
<td></td>
</tr>
<tr>
<td>Steam-Turbine</td>
<td>12,000-15,000</td>
<td>Highest</td>
</tr>
</tbody>
</table>
CT-Based Characteristic

Increase in Ambient Air Temperature Causes a Triple Whammy:

- Reduces Power Output
- Increases Heat Rate
- Reduces Thermal Energy in the CT Exhaust Gases
Effect of Inlet Air Temperature on CT Output

Increase in Inlet Air Temperature Decreases Power Output

Effect of Inlet Air Temperature on CT Heat Rate

Increase in Inlet Air Temperature Increases Heat Rate (i.e. Decreases Energy Efficiency and Increases Emissions)

Effect of Inlet Air Temperature on CT Output (Small Turbines)

Increase in Inlet Air Temperature Decreases Power Output

Source: Solar Turbines
CT-Based CHP System Characteristic

Increase in Ambient Air Temperature Decreases Exhaust Gas Flow Rate and Increases Temperature (Total Available Energy Decreases)

Source: Punwani, D.V. and Andrepont, J.S., POWER-GEN International 2005
Economic Impacts of Increase in Ambient Temperature on CT-Based Systems

- Increases the cost of buying power and thermal energy (to make up for the lost CT output), if the Cogen owner is using its output for meeting its own needs, or

- Reduces revenue potential from the sale of power and thermal energy, if the cogen owner is selling these energies to others
Environmental Impacts of Increase in Ambient Temperature on CT-Based Systems

- Increases the carbon footprint for power generation at the generation facility
- Increases the carbon footprint of power generation for the grid system connected to the generation facility (because somewhere a less efficient system has to be brought online to meet the demand to prevent power outage)
Why Cool to the turbine inlet air?

Overcome all three detrimental effects of increase in inlet air temperature on the CT performance:

1. Decrease in power generation capacity
2. Increase in Heat Rate
3. Decrease in enthalpy of the CT exhaust gases
TIC Economic Benefits

• Increases CT output (MWh and thermal energy) and thus, saves cost of buying or reduces revenue for selling these energies during on-peak demand periods when electric energy demand and price are highest.

• Reduces cost of electric energy generation compared to the less energy efficiency “peakers”.

• Requires less investment per unit ($/kW) of the increased generation capacity compared to new power plants.
TIC Environmental Benefits

Reduced Emissions of GHG and pollutants

- Displaced/eliminated operation (up to 30% of the CT capacity*) of less efficient and higher emission power plants
- Increased efficiency of fuel utilization

Reduced Need for Siting New Generation Capacity for Meeting Power Demand During Hot Weather

* During hot weather
What is Turbine Inlet Cooling?

- Cooling the inlet air to the compressor that supplies the high-pressure compressed air to the combustor of a combustion turbine
Disadvantages of TIC

- Permanent higher CT inlet pressure drop
- Magnitude of inlet pressure drop varies with the cooling technology:
 0.1 to 1.0 WC (~0.025 to 0.25% of the CT Output)
- Small drop in CT output capacity even when inlet cooling is not being used
- Additional maintenance cost of the cooling equipment
TIC Commercial Experience

- Over thousand plants are already using one of the TIC technologies

- TIC systems are available from multiple suppliers
TIC Technologies

- Evaporative Cooling
 - Wetted Media
 - Fogging
- Chillers
 - Mechanical (Electric- or Steam-Driven)
 - Absorption Chillers
 - With Thermal Energy Storage
TIC Technologies

Evaporative Cooling

- Cooling is produced by evaporation of the water added to the inlet air
- Most used TIC technology option
- Its limitation: Cannot cool the air to below the ambient wet-bulb temperature and therefore, its effectiveness decreases as the ambient relative humidity goes up
- Generation capacity of the CT varies with the ambient temperatures
TIC Technologies

Direct Evaporative Cooling

Source: GE Power Systems
TIC Technologies

Wetted Media Systems

Source: Munters Corporation
TIC Technologies

Fogging Systems
Figure Correction: There should be a stream for steam leaving the HRSG for use in steam turbine or other heating applications.

Source: Punwani, D.V. Energy-Tech, June 2004
Chiller Systems

- Cool the air by exchanging heat through a cold fluid produced by a chiller
- Can cool the inlet air to any desired temperature even below the wet-bulb temperature to as low as 42F (Even lower if the ambient air is very dry)
- Can maintain constant CT output irrespective of the ambient temperatures
TIC Technologies

Chiller Systems

• Many types of chillers are applicable and commercially used:

 MECHANICAL: Electric-, Steam-Turbine or Engine-Driven

 ABSORPTION: Aqua-Ammonia or Lithium Bromide-Water

• With or without thermal energy storage (TES)
TIC Technologies

Mechanical Chillers

- Refrigerant: HCFCs, HFCs or Ammonia
- Water-Cooled or Air-Cooled
- Can cool the air to any desired temperature
Lithium Bromide–Water Absorption Chillers

- Refrigerant: Water
- Water-Cooled
- Two Types
 - Single-Effect
 - Double-Effect
- Cannot cool the air to much below 50F
Lithium Bromide–Water Absorption Chillers

Primary Energy Source Options

- **Single-Effect**
 - Steam (15 psig): 18lb/h ton
 - Hot Water (at least 180F)

- **Double-Effect**
 - Steam (115 psig): 10lb/ton
 - Natural Gas or Exhaust Gases
TIC Technologies

Chillers and Thermal Energy Storage (TES)

• Increase power output capacity and revenues during on-peak periods

• Desirable if TIC is needed only during a small number of hours per day

• Incorporate tank(s) that store chilled water or ice which is produced chillers or refrigeration systems during off-peak period

• TES can reduce total TIC system capital cost by reducing the chiller capacity required to achieve the same instantaneous on-peak cooling demand

• Disadvantage: Need bigger site footprint
TES system options:

1. Full-Shift: Chillers not operated during on-peak

2. Partial-Shift: Chillers also operated during on-peak to complement the cooling capacity available from the stored chilled water or ice
Effect of TIC Technology on Net Capacity Enhancement

For a nominal 500 MW Combined-Cycle System

- Wetted Media
 - 95F DB and 80F WB: 18 MW
 - 95F DB and 60F WB: 41 MW

- Fogging
 - 95F DB and 80F WB: 19 MW
 - 95F DB and 60F WB: 43 MW

- Electric Chiller
 - 95F DB and 80F WB: 56 MW
TIC Economics

Is TIC Cost Effective?

Depends on many factors, including:

- Weather data for the plant location*
- Market value/price of electric energy
- Cost of fuel

* Chicago area has over 3,360 when temperature is above 59F
Effect of TIC Technology on Incremental Capital Cost for Capacity Enhancement

(317 MW Cogeneration Plant; 95F BD & 80F WB)

Source: Punwani et al. ASHRAE Winter Meeting, January 2001

*Absorption chiller cost also includes the cost of the heat recovery equipment
Effect of TIC Technology on Increase in Electric Energy Produced
(317 MW Cogeneration Plant; 95F DB and 80F WB)

DOE Survey* of CHP Installations with TIC

Results: Geographical Distribution

<table>
<thead>
<tr>
<th>State</th>
<th>Number of Systems</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>11</td>
<td>38</td>
</tr>
<tr>
<td>Texas</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Florida</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>New York</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Colorado</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Hawaii</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Illinois</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Maryland</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Nevada</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>100</td>
</tr>
</tbody>
</table>

* Performed by the Cool Solutions Company and Avalon Consulting, Inc (2004)
DOE Survey* of CHP Installations with TIC

Results: Applications Served

<table>
<thead>
<tr>
<th>Application</th>
<th>Total Number</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td>18</td>
<td>38</td>
</tr>
<tr>
<td>District Energy</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Commercial</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Government</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Educational Facilities</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Medical</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Airport</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>100</td>
</tr>
</tbody>
</table>

* Performed by the Cool Solutions Company and Avalon Consulting, Inc (2004)

** Total Applications are higher than the number of installations because of many the installations serve multiple facilities
DOE Survey* of CHP Installations with TIC Results: TIC Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Number of CHP Systems</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chillers</td>
<td>21</td>
<td>73</td>
</tr>
<tr>
<td>Ammonia Evaporation in Coil</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Wetted Media</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Fogging</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Over-Spray Fogging (Wet Compression)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>100</td>
</tr>
</tbody>
</table>

*Performed by the Cool Solutions Company and Avalon Consulting, Inc (2004)
McCormick Place Cogen* with TIC, Chicago, IL

- East Exhibit Hall ----
 4,000 T (1994)

- North Exhibit Hall ----
 4,000 T (1994)

- South Exhibit Hall ----
 8,000 T (1997)
 32-story hotel
 1,000 T (1998)

- Internet “hotel” ----
 3,000 T (2000)

 Gov’t office space
 1,000 T (2000)

* Metropolitan Pier & Exposition Authority (Originally owned and operated by Trigen-Peoples District Energy)

Source: Andrepont, J.S., ASHRAE Winter Meeting, January 2006
McCormick Place Cogen* with TIC, Chicago, IL

- Three CTs (1.1 MW each)
- Each CT drives an induction-motor generator and a 2,200 Ton ammonia screw chiller
- Side-stream of ammonia refrigerant used for cooling inlet air to 50°F
- CT Exhaust heat exhaust recovered for steam production used for space heating or absorption cooling
- 123,000 Ton-hours (8.5 million gallons) of TES (127 ft Diameter x 90 ft High)

Source: Andrepont, J.S., ASHRAE Winter Meeting, January 2006
Recent Cogen Installations with TIC

- 5-MW System at Lafarge Gypsum Division, Sliver Grove, KY (2004)
- 4.5-MW System at the Domain Power Park Austin, TX (2004)
- 5.5 MW-System at the U.S. Army, Fort Bragg, NC (2005)

Conclusions

- TIC Improves the Economics of Power Generation
- TIC Reduces Carbon Footprint for Power Generation
- Therefore, TIC is Good for the Environment, Rate Payers and Plant Owners
Any Questions?
Speaker’s Contact Information

Dharam (Don) Punwani
President
Avalon Consulting, Inc.
Voice: 630-983-0883
E-mail: dpunwani@avalonconsulting.com